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Objectives  

 Design and implement a set of performance and 
stability tests for HPC systems with heterogeneous 
architectures 

 Implemented each test in MPI, OpenCL, CUDA to  

 Evaluate the differences in these emerging programming models 

 MIC to be released shortly 

 OpenACC coming soon 

 Sponsored by NSF, DOE 

This chart shows the “out of the box” improvement from NVIDIA Fermi (M2090) to Kepler (K20m). Measured using CUDA 5.0 with 

an identical host system. Largest improvements observed in compute intensive workloads. Modest increases for memory bound 

kernels. No increase in DP FFT, suggests CUFFT not completely optimized for Kepler in release 5.0.  

PI: Jeffrey S. Vetter, ORNL 

Future Technologies Group The Scalable HeterOgeneous Computing (SHOC) 
Benchmark Suite https://github.com/vetter/shoc  

A. Danalis, G. Marin, C. McCurdy, J. Meredith, P.C. Roth, K. Spafford, V. Tipparaju, and J.S. Vetter, 

“The Scalable HeterOgeneous Computing (SHOC) Benchmark Suite,” in Third Workshop on 

General-Purpose Computation on Graphics Processors (GPGPU 2010)`. Pittsburgh, 2010 

Accomplishments 
 Consistent open source software releases  

 Over 10000 downloads internationally since 2010 

 Used in multiple procurements worldwide 

 Used by vendors and researchers for testing, understanding 

 Across diverse range of architectures: NVIDIA, AMD, ARM, Intel, even 
Android 

 Overview published at 3rd Workshop General-Purpose Computation on 
Graphics Processing Units (GPGPU ‘10): ~100 citations to date 

https://github.com/vetter/shoc
https://github.com/vetter/shoc


Motivation 
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Emerging Computing Architectures 

• Heterogeneous processing 
– Many cores 

– Fused, configurable memory 

• Memory 
– 3D Stacking 

– New devices (PCRAM, ReRAM) 

• Interconnects 
– Collective offload 

– Scalable topologies 

• Storage 
– Active storage 

– Non-traditional storage architectures 
(key-value stores) 

• Improving performance and 
programmability in face of increasing 
complexity 
– Power, resilience 

 

HPC (all) computer design is more fluid now than in the past two decades. 



TH-2 System 
 Compute Nodes have 3.432 Tflop/s 

per node 
– 16,000 nodes 

– 32000 Intel Xeon cpus 

– 48000 Intel Xeon phis 

 Operations Nodes 
– 4096 FT CPUs as operations nodes 

 Proprietary interconnect TH2 
express 

 1PB memory (host memory only) 
 Global shared parallel storage is 

12.4 PB 
 Cabinets: 125+13+24 = 162 

compute/communication/storage 
cabinets 
– ~750 m2 

 NUDT and Inspur 
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SYSTEM SPECIFICATIONS: 

• Peak performance of 27.1 PF 

• 24.5 GPU + 2.6 CPU 

• 18,688 Compute Nodes each with: 

• 16-Core AMD Opteron CPU 

• NVIDIA Tesla “K20x” GPU 

• 32 + 6 GB memory 

• 512 Service and I/O nodes 

• 200 Cabinets 

• 710 TB total system memory 

• Cray Gemini 3D Torus Interconnect 

• 8.9 MW peak power 

ORNL’s “Titan” Hybrid System: 

Cray XK7 with AMD Opteron and 

NVIDIA Tesla processors 

4,352 ft2 



Contemporary HPC Architectures 
Date System Location Comp Comm Peak 

(PF) 

Power 

(MW) 

2009 Jaguar; Cray XT5 ORNL AMD 6c Seastar2 2.3 7.0 

2010 Tianhe-1A NSC Tianjin Intel + NVIDIA Proprietary 4.7 4.0 

2010 Nebulae NSCS 

Shenzhen 

Intel + NVIDIA IB 2.9 2.6 

2010 Tsubame 2 TiTech Intel + NVIDIA IB 2.4 1.4 

2011 K Computer RIKEN/Kobe SPARC64 VIIIfx Tofu 10.5 12.7 

2012 Titan; Cray XK6 ORNL AMD + NVIDIA Gemini 10-20 9 

2012 Mira; BlueGeneQ ANL SoC Proprietary 10 3.9 

2012 Sequoia; BlueGeneQ LLNL SoC Proprietary 20 7.9 

2012 Blue Waters; Cray NCSA/UIUC AMD + (partial) 

NVIDIA 

Gemini 11.6 

2013 Stampede TACC Intel + MIC IB 9.5 5 

2013 Tianhe-2 NSCC-GZ 

(Guangzhou) 

Intel + MIC Proprietary 54 ~20 



9 Managed by UT-Battelle 
 for the U.S. Department of Energy 

AMD Llano’s fused memory hierarchy 

K. Spafford, J.S. Meredith, S. Lee, D. Li, P.C. Roth, and J.S. Vetter, “The Tradeoffs of Fused 
Memory Hierarchies in Heterogeneous Architectures,” in ACM Computing Frontiers (CF). 
Cagliari, Italy: ACM, 2012. 
Note: Both SB and Llano are consumer parts, not server parts. 
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Future Directions in Heterogeneous 

Computing 

• Over the next decade: 
Heterogeneous computing will 
continue to increase in 
importance 

• Manycore 

• Hardware features 
– Transactional memory 

– Random Number Generators 

– Scatter/Gather 

– Wider SIMD/AVX 

• Synergies with BIGDATA, 
mobile markets, graphics 

• Top 10 list of features to include 
from application perspective. 
Now is the time! 

 



NVIDIA Echelon System Sketch 

NVIDIA Echelon team: NVIDIA, ORNL, Micron, Cray, Georgia Tech, Stanford, UC-Berkeley, U Penn, Utah, Tennessee, Lockheed 

Martin 

DARPA UHPC Funded Project 



Critical Implications for  
Software, Apps, Developers 

 Functional portability 

 Performance portability 

 Fast moving research, 
standards, products 

 Incompatibilities among 
models 

 Rewrite your code every 
5 years 

 Jobs! 

 

12 
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Performance of Directive-based GPU 

Programming Models Gaining on Hand-

Written CUDA 

•Speedups are over serial on the CPU compiled with GCC v4.1.2 using option -O3, when the largest available 
input data were used.  

•Experimental Platform: CPU: Intel Xeon at 2.8 GHz GPU: NVIDIA Tesla M2090 with 512 CUDA cores at 1.15GHz 
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Keeneland Overview 



Keeneland – Full Scale System 
Initial Delivery system installed in Oct 2010 

•201 TFLOPS in 7 racks (90 sq ft incl service area) 

•902 MFLOPS per watt on HPL (#12 on Green500) 

•Upgraded April 2012 to 255 TFLOPS 

•Over 200 users, 100 projects using KID 

Full scale system installed in Oct 2012 

•792 M2090 GPUs contribute to aggregate system peak of 615 TF 

ProLiant SL250 G8 
(2CPUs,  3GPUs) 

S6500 Chassis 
(4 Nodes) 

Rack 
(6 Chassis) 

M2090 

Xeon E5-2670 

Mellanox 384p FDR Infiniband Switch 

Integrated with NICS 
Datacenter Lustre and XSEDE 

Full PCIeG3 X16 
bandwidth to all GPUs 

166 

GFLOPS 

665 

GFLOPS 

2327 

GFLOPS 

32/18 GB 

9308 

GFLOPS 

55848 

GFLOPS 

614450 

GFLOPS 

http://keeneland.gatech.edu  

J.S. Vetter, R. Glassbrook et al., “Keeneland: Bringing heterogeneous GPU computing to the computational science community,” IEEE 

Computing in Science and Engineering, 13(5):90-5, 2011, http://dx.doi.org/10.1109/MCSE.2011.83.  

Keeneland System 
(11 Compute Racks) 

http://keeneland.gatech.edu/
http://dx.doi.org/10.1109/MCSE.2011.83


Keeneland Full Scale System Node Architecture 
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KIDS Node Architecture SL390 



NVIDIA Fermi - M2090 

• 3B transistors in 40nm 

• 512 CUDA Cores 

– New IEEE 754-2008  
floating-point standard 

• FMA 

• 8 the peak double precision 
arithmetic performance over NVIDIA's 
last generation GPU 

– 32 cores per SM, 21k threads per 
chip 

• 384b GDDR5, 6 GB capacity 

– 178 GB/s memory BW 

• C/M2090 
– 665 GigaFLOPS DP, 6GB 

– ECC Register files, L1/L2 
caches, shared memory and 
DRAM 
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KIDS v. KFS 
Item KID (initial) KFS (full scale) 

Started Operation Nov 2010 (upgraded April 2012) October 2012 

Node HP Proliant SL390 HP Proliant SL250 

# Nodes 120 264 

GPU M2090 (Fermi) 

Upgraded from M2070 in Spring 

2012 

M2090 (Fermi) 

# GPUs 360 792 

GPU Peak DP 665 665 

GPU Mem BW 177 177 

GPU DGEMM 470 470 

Host PCI PCIeG2x16 PCIeG3x16 

Interconnect  Integrated Mellanox IB QDR Mellanox IB FDR 

IB Ports/node 1 1 

IB Switches Qlogic QDR 384 Mellanox FDR 384p Switch 

Memory/node 24 32 

Host CPU Westmere Sandy Bridge 

GPU/CPU Ratio 3:2 3:2 

Racks 7 13 

DP Peak (GPUs only) (TF) 239 527 



Heterogeneous Computing with GPUs 

CPU + GPU Co-Processing 

4 cores 

CPU 
48 GigaFlops (DP) 

GPU 
665 GigaFlops (DP) 



Applications must use a mix of 
programming models 

MPI 

Low overhead 

Resource 
contention 

Locality 

OpenMP, Pthreads 

SIMD 

NUMA 

OpenACC, CUDA, OpenCL 
Memory use, 

coalescing 
Data 

orchestration 
Fine grained 
parallelism 

Hardware 
features 



Keeneland Software Environment 

• Integrated with NSF 
XSEDE 
– Including XSEDE and NICS 

software stack (cf. Kraken) 

• Programming 
environments 
– CUDA 

– OpenCL 

– Compilers 
• GPU-enabled 

– Scalable debuggers 

– Performance tools 

– Libraries 

• Tools and programming 
options are changing 
rapidly 

– HMPP, PGI, OpenMPC, R-
stream,  

• Additional software 
activities 

– Performance and 
correctness tools 

– Scientific libraries 

– Virtualization 
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A Very Brief Introduction to 
Programming GPUs with 

CUDA 

nvidia-intro-to-cuda.pdf 

nvidia-intro-to-cuda.pdf
nvidia-intro-to-cuda.pdf
nvidia-intro-to-cuda.pdf
nvidia-intro-to-cuda.pdf
nvidia-intro-to-cuda.pdf
nvidia-intro-to-cuda.pdf
nvidia-intro-to-cuda.pdf


Introduction to CUDA C



What is CUDA?

 CUDA Architecture

— Expose general-purpose GPU computing as first-class capability

— Retain traditional DirectX/OpenGL graphics performance

 CUDA C

— Based on industry-standard C 

— A handful of language extensions to allow heterogeneous programs

— Straightforward APIs to manage devices, memory, etc.

 This talk will introduce you to CUDA C



Introduction to CUDA C

What will you learn today?

— Start from ―Hello, World!‖

— Write and launch CUDA C kernels

— Manage GPU memory

— Run parallel kernels in CUDA C

— Parallel communication and synchronization

— Race conditions and atomic operations



CUDA C: The Basics

Host

Note: Figure Not to Scale

 Terminology

 Host – The CPU and its memory (host memory)

 Device – The GPU and its memory (device memory)

Device



Hello, World!

int main( void ) {

printf( "Hello, World!\n" );

return 0;

}

 This basic program is just standard C that runs on the host

 NVIDIA’s compiler (nvcc) will not complain about CUDA programs 
with no device code

 At its simplest, CUDA C is just C!



Hello, World! with Device Code

__global__ void kernel( void ) {

} 

int main( void ) {

kernel<<<1,1>>>();

printf( "Hello, World!\n" );

return 0;

}

 Two notable additions to the original ―Hello, World!‖



Hello, World! with Device Code
__global__ void kernel( void ) {

}

 CUDA C keyword  __global__ indicates that a function

— Runs on the device

— Called from host code

 nvcc splits source file into host and device components

— NVIDIA’s compiler handles device functions like kernel()

— Standard host compiler handles host functions like main()

 gcc

 Microsoft Visual C



Hello, World! with Device Code

int main( void ) {

kernel<<< 1, 1 >>>();

printf( "Hello, World!\n" );

return 0;

}

 Triple angle brackets mark a call from host code to device code

— Sometimes called a ―kernel launch‖ 

— We’ll discuss the parameters inside the angle brackets later

 This is all that’s required to execute a function on the GPU!

 The function kernel() does nothing, so this is fairly anticlimactic…



A More Complex Example

 A simple kernel to add two integers:

__global__ void add( int *a, int *b, int *c ) {

*c = *a + *b;

}

 As before, __global__ is a CUDA C keyword meaning

— add() will execute on the device

— add() will be called from the host



A More Complex Example

 Notice that we use pointers for our variables:

__global__ void add( int *a, int *b, int *c ) {

*c = *a + *b;

}

 add() runs on the device…so a, b, and c must point to 

device memory

 How do we allocate memory on the GPU?



Memory Management
 Host and device memory are distinct entities

— Device pointers point to GPU memory

 May be passed to and from host code

 May not be dereferenced from host code

— Host pointers point to CPU memory 

 May be passed to and from device code

 May not be dereferenced from device code

 Basic CUDA API for dealing with device memory

— cudaMalloc(), cudaFree(), cudaMemcpy()

— Similar to their C equivalents, malloc(), free(), memcpy()



A More Complex Example: add()

 Using our add()kernel:

__global__ void add( int *a, int *b, int *c ) {

*c = *a + *b;

}

 Let’s take a look at  main()…



A More Complex Example: main()

int main( void ) {

int a, b, c;                   // host copies of a, b, c

int *dev_a, *dev_b, *dev_c;    // device copies of a, b, c

int size = sizeof( int );      // we need space for an integer

// allocate device copies of a, b, c

cudaMalloc( (void**)&dev_a, size );

cudaMalloc( (void**)&dev_b, size );

cudaMalloc( (void**)&dev_c, size );

a = 2;

b = 7;



A More Complex Example: main() (cont)
// copy inputs to device

cudaMemcpy( dev_a, &a, size, cudaMemcpyHostToDevice );

cudaMemcpy( dev_b, &b, size, cudaMemcpyHostToDevice );

// launch add() kernel on GPU, passing parameters

add<<< 1, 1 >>>( dev_a, dev_b, dev_c );

// copy device result back to host copy of c

cudaMemcpy( &c, dev_c, size, cudaMemcpyDeviceToHost );

cudaFree( dev_a );

cudaFree( dev_b );

cudaFree( dev_c );

return 0;

}



Parallel Programming in CUDA C

 But wait…GPU computing is about massive parallelism

 So how do we run code in parallel on the device?

 Solution lies in the parameters between the triple angle brackets:

add<<< 1, 1 >>>( dev_a, dev_b, dev_c );

add<<< N, 1 >>>( dev_a, dev_b, dev_c );

 Instead of executing add() once, add() executed N times in parallel



Parallel Programming in CUDA C
 With add() running in parallel…let’s do vector addition

 Terminology: Each parallel invocation of add() referred to as a block

 Kernel can refer to its block’s index with the variable blockIdx.x

 Each block adds a value from a[] and b[], storing the result in c[]:

__global__ void add( int *a, int *b, int *c ) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

 By using blockIdx.x to index arrays, each block handles different indices



Parallel Programming in CUDA C

Block 1

c[1] = a[1] + b[1];

 We write this code:
__global__ void add( int *a, int *b, int *c ) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

 This is what runs in parallel on the device:

Block 0

c[0] = a[0] + b[0];

Block 2

c[2] = a[2] + b[2];

Block 3

c[3] = a[3] + b[3];



Parallel Addition: add()

 Using our newly parallelized add()kernel:

__global__ void add( int *a, int *b, int *c ) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

 Let’s take a look at  main()…



Parallel Addition: main()
#define N  512

int main( void ) {

int *a, *b, *c;                   // host copies of a, b, c

int *dev_a, *dev_b, *dev_c;       // device copies of a, b, c

int size = N * sizeof( int );     // we need space for 512 integers

// allocate device copies of a, b, c

cudaMalloc( (void**)&dev_a, size );

cudaMalloc( (void**)&dev_b, size );

cudaMalloc( (void**)&dev_c, size );

a = (int*)malloc( size ); 

b = (int*)malloc( size );

c = (int*)malloc( size );

random_ints( a, N ); 

random_ints( b, N );



Parallel Addition: main() (cont)
// copy inputs to device

cudaMemcpy( dev_a, a, size, cudaMemcpyHostToDevice );

cudaMemcpy( dev_b, b, size, cudaMemcpyHostToDevice );

// launch add() kernel with N parallel blocks

add<<< N, 1 >>>( dev_a, dev_b, dev_c );

// copy device result back to host copy of c

cudaMemcpy( c, dev_c, size, cudaMemcpyDeviceToHost );

free( a ); free( b ); free( c );

cudaFree( dev_a );

cudaFree( dev_b );

cudaFree( dev_c );

return 0;

}



Review

 Difference between ―host‖ and ―device‖

— Host = CPU

— Device = GPU

 Using __global__ to declare a function as device code

— Runs on device

— Called from host

 Passing parameters from host code to a device function



Review (cont)

 Basic device memory management

— cudaMalloc()

— cudaMemcpy()

— cudaFree()

 Launching parallel kernels

— Launch N copies of add() with:  add<<< N, 1 >>>();

— Used blockIdx.x to access block’s index



Threads

 Terminology: A block can be split into parallel threads

 Let’s change vector addition to use parallel threads instead of parallel blocks:

__global__ void add( int *a, int *b, int *c ) {

c[            ] = a[            ] + b[            ];

}

 We use threadIdx.x instead of blockIdx.x in add()

 main() will require one change as well…

threadIdx.x       threadIdx.x threadIdx.xblockIdx.x        blockIdx.x blockIdx.x



Parallel Addition (Threads): main()
#define N  512

int main( void ) {

int *a, *b, *c;                      //host copies of a, b, c

int *dev_a, *dev_b, *dev_c;          //device copies of a, b, c

int size = N * sizeof( int );        //we need space for 512 integers

// allocate device copies of a, b, c

cudaMalloc( (void**)&dev_a, size );

cudaMalloc( (void**)&dev_b, size );

cudaMalloc( (void**)&dev_c, size );

a = (int*)malloc( size ); 

b = (int*)malloc( size );

c = (int*)malloc( size );

random_ints( a, N ); 

random_ints( b, N );



Parallel Addition (Threads): main() (cont)
// copy inputs to device

cudaMemcpy( dev_a, a, size, cudaMemcpyHostToDevice );

cudaMemcpy( dev_b, b, size, cudaMemcpyHostToDevice );

// launch add() kernel with N

add<<<  >>>( dev_a, dev_b, dev_c );

// copy device result back to host copy of c

cudaMemcpy( c, dev_c, size, cudaMemcpyDeviceToHost );

free( a ); free( b );  free( c );

cudaFree( dev_a );

cudaFree( dev_b );

cudaFree( dev_c );

return 0;

}

threads

1, N 

blocks

N, 1 



Using Threads And Blocks

 We’ve seen parallel vector addition using

— Many blocks with 1 thread apiece

— 1 block with many threads

 Let’s adapt vector addition to use lots of both blocks and threads

 After using threads and blocks together, we’ll talk about why threads

 First let’s discuss data indexing…



Indexing Arrays With Threads And Blocks

 No longer as simple as just using threadIdx.x or blockIdx.x as indices

 To index array with 1 thread per entry (using 8 threads/block)

 If we have M threads/block, a unique array index for each entry given by

int index = threadIdx.x + blockIdx.x * M;

int index =      x      +     y      * width;

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

threadIdx.x

0 1 2 3 4 5 6 7

threadIdx.x

0 1 2 3 4 5 6 7

threadIdx.x

0 1 2 3 4 5 6 7

threadIdx.x

0 1 2 3 4 5 6 7



Indexing Arrays: Example

 In this example, the red entry would have an index of 21:

int index = threadIdx.x + blockIdx.x * M;

=     5       +     2      * 8;

= 21;

blockIdx.x = 2

M = 8 threads/block

0 178 16 18 19 20 2121 3 4 5 6 7 109 11 12 13 14 15



Addition with Threads and Blocks

 The blockDim.x is a built-in variable for threads per block:

int index= threadIdx.x + blockIdx.x * blockDim.x;

 A combined version of our vector addition kernel to use blocks and threads:

__global__ void add( int *a, int *b, int *c ) {

int index = threadIdx.x + blockIdx.x * blockDim.x;

c[index] = a[index] + b[index];

}

 So what changes in main() when we use both blocks and threads?



Parallel Addition (Blocks/Threads): main()
#define N  (2048*2048)

#define THREADS_PER_BLOCK 512

int main( void ) {

int *a, *b, *c;                      // host copies of a, b, c

int *dev_a, *dev_b, *dev_c;          // device copies of a, b, c

int size = N * sizeof( int );        // we need space for N integers

// allocate device copies of a, b, c

cudaMalloc( (void**)&dev_a, size );

cudaMalloc( (void**)&dev_b, size );

cudaMalloc( (void**)&dev_c, size );

a = (int*)malloc( size ); 

b = (int*)malloc( size );

c = (int*)malloc( size );

random_ints( a, N ); 

random_ints( b, N );



Parallel Addition (Blocks/Threads): main()
// copy inputs to device

cudaMemcpy( dev_a, a, size, cudaMemcpyHostToDevice );

cudaMemcpy( dev_b, b, size, cudaMemcpyHostToDevice );

// launch add() kernel with blocks and threads

add<<< N/THREADS_PER_BLOCK, THREADS_PER_BLOCK >>>( dev_a, dev_b, dev_c );

// copy device result back to host copy of c

cudaMemcpy( c, dev_c, size, cudaMemcpyDeviceToHost );

free( a ); free( b ); free( c );

cudaFree( dev_a );

cudaFree( dev_b );

cudaFree( dev_c );

return 0;

}



Why Bother With Threads?

 Threads seem unnecessary

— Added a level of abstraction and complexity

— What did we gain?

 Unlike parallel blocks, parallel threads have mechanisms to

— Communicate

— Synchronize

 Let’s see how…



Dot Product

 Unlike vector addition, dot product is a reduction from vectors to a scalar

c  =  a ∙ b

c  =  (a0, a1, a2, a3) ∙ (b0, b1, b2, b3) 

c =   a0 b0 + a1 b1 + a2 b2 + a3 b3

a0

a1

a2

a3

b0

b1

b2

b3

*

*

*

*

+

a b

c



Dot Product

 Parallel threads have no problem computing the pairwise products:

 So we can start a dot product CUDA kernel by doing just that:

__global__ void dot( int *a, int *b, int *c )   {

// Each thread computes a pairwise product

int temp = a[threadIdx.x] * b[threadIdx.x];

a0

a1

a2

a3

b0

b1

b2

b3

*

*

*

*

+

a b



Dot Product

 But we need to share data between threads to compute the final sum:

__global__ void dot( int *a, int *b, int *c )   {

// Each thread computes a pairwise product

int temp = a[threadIdx.x] * b[threadIdx.x];

// Can’t compute the final sum 

// Each thread’s copy of ‘temp’ is private

}

a0

a1

a2

a3

b0

b1

b2

b3

*

*

*

*

+

a b



Sharing Data Between Threads

 Terminology: A block of threads shares memory called…

 Extremely fast, on-chip memory (user-managed cache)

 Declared with the __shared__ CUDA keyword

 Not visible to threads in other blocks running in parallel

shared memory

Shared Memory

Threads

Block 0

Shared Memory

Threads

Block 1

Shared Memory

Threads

Block 2

…



Parallel Dot Product: dot()

 We perform parallel multiplication, serial addition:

#define N  512

__global__ void dot( int *a, int *b, int *c ) {

// Shared memory for results of multiplication

__shared__ int temp[N];

temp[threadIdx.x] = a[threadIdx.x] * b[threadIdx.x];

// Thread 0 sums the pairwise products

if( 0 == threadIdx.x ) {

int sum = 0;

for( int i = 0; i < N; i++ )

sum += temp[i];

*c = sum;

}

}



Parallel Dot Product Recap

 We perform parallel, pairwise multiplications

 Shared memory stores each thread’s result

 We sum these pairwise products from a single thread

 Sounds good…but we’ve made a huge mistake



Faulty Dot Product Exposed!

 Step 1: In parallel, each thread writes a pairwise product

 Step 2: Thread 0 reads and sums the products

 But there’s an assumption hidden in Step 1…

__shared__ int temp

__shared__ int temp

In parallel



Read-Before-Write Hazard
 Suppose thread 0 finishes its write in step 1

 Then thread 0 reads index 12 in step 2 

 Before thread 12 writes to index 12 in step 1?

This read returns garbage!



Synchronization
 We need threads to wait between the sections of dot():

__global__ void dot( int *a, int *b, int *c ) {

__shared__ int temp[N];

temp[threadIdx.x] = a[threadIdx.x] * b[threadIdx.x];

// * NEED THREADS TO SYNCHRONIZE HERE *

// No thread can advance until all threads

// have reached this point in the code

// Thread 0 sums the pairwise products

if( 0 == threadIdx.x ) {

int sum = 0;

for( int i = 0; i < N; i++ )

sum += temp[i];

*c = sum;

}

}



__syncthreads()

 We can synchronize threads with the function __syncthreads()

 Threads in the block wait until all threads have hit the __syncthreads()

 Threads are only synchronized within a block

__syncthreads()

__syncthreads()

__syncthreads()

__syncthreads()

__syncthreads()

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4…



Parallel Dot Product: dot()
__global__ void dot( int *a, int *b, int *c ) {

__shared__ int temp[N];

temp[threadIdx.x] = a[threadIdx.x] * b[threadIdx.x];

__syncthreads(); 

if( 0 == threadIdx.x ) {

int sum = 0;

for( int i = 0; i < N; i++ )

sum += temp[i];

*c = sum;

}

}

 With a properly synchronized dot() routine, let’s look at main()



Parallel Dot Product: main()
#define N  512

int main( void ) {

int *a, *b, *c;                      // copies of a, b, c

int *dev_a, *dev_b, *dev_c;          // device copies of a, b, c

int size = N * sizeof( int );        // we need space for 512 integers

// allocate device copies of a, b, c

cudaMalloc( (void**)&dev_a, size );

cudaMalloc( (void**)&dev_b, size );

cudaMalloc( (void**)&dev_c, sizeof( int ) );

a = (int *)malloc( size ); 

b = (int *)malloc( size );

c = (int *)malloc( sizeof( int ) );

random_ints( a, N ); 

random_ints( b, N );



Parallel Dot Product: main()
// copy inputs to device

cudaMemcpy( dev_a, a, size, cudaMemcpyHostToDevice );

cudaMemcpy( dev_b, b, size, cudaMemcpyHostToDevice );

// launch dot() kernel with 1 block and N threads

dot<<< 1, N >>>( dev_a, dev_b, dev_c );

// copy device result back to host copy of c

cudaMemcpy( c, dev_c, sizeof( int ) , cudaMemcpyDeviceToHost );

free( a ); free( b ); free( c );

cudaFree( dev_a );

cudaFree( dev_b );

cudaFree( dev_c );

return 0;

}



Review

 Launching kernels with parallel threads

— Launch add() with N threads:  add<<< 1, N >>>();

— Used threadIdx.x to access thread’s index

 Using both blocks and threads 

— Used (threadIdx.x + blockIdx.x * blockDim.x) to index input/output

— N/THREADS_PER_BLOCK blocks and THREADS_PER_BLOCK threads gave us N threads total



Review (cont)

 Using __shared__ to declare memory as shared memory

— Data shared among threads in a block

— Not visible to threads in other parallel blocks

 Using __syncthreads() as a barrier

— No thread executes instructions after __syncthreads() until all 

threads have reached the __syncthreads()

— Needs to be used to prevent data hazards



Multiblock Dot Product

 Recall our dot product launch:

// launch dot() kernel with 1 block and N threads

dot<<< 1, N >>>( dev_a, dev_b, dev_c );

 Launching with one block will not utilize much of the GPU

 Let’s write a multiblock version of dot product



Multiblock Dot Product: Algorithm

 Each block computes a sum of its pairwise products like before:

a0

a1

a2

a3

b0

b1

b2

b3

*

*

*

*

+

a b

… …

sum

Block 0

a512

a513

a514

a515

b512

b513

b514

b515

*

*

*

*

+

a b

… …

sum

Block 1



Multiblock Dot Product: Algorithm

 And then contributes its sum to the final result:

a0

a1

a2

a3

b0

b1

b2

b3

*

*

*

*

+

a b

… …

sum

Block 0

a512

a513

a514

a515

b512

b513

b514

b515

*

*

*

*

+

a b

… …

sum

Block 1

c



Multiblock Dot Product: dot()
#define N  (2048*2048)

#define THREADS_PER_BLOCK  512

__global__ void dot( int *a, int *b, int *c ) {

__shared__ int temp[THREADS_PER_BLOCK];

int index = threadIdx.x + blockIdx.x * blockDim.x;

temp[threadIdx.x] = a[index] * b[index];

__syncthreads(); 

if( 0 == threadIdx.x ) {

int sum = 0;

for( int i = 0; i < THREADS_PER_BLOCK; i++ )

sum += temp[i];

}

}

 But we have a race condition…

 We can fix it with one of CUDA’s atomic operations

*c += sum;atomicAdd( c , sum );

vjj
Callout
was *c += sum;



Race Conditions

 Thread 0, Block 1

— Read value at address c

— Add sum to value

— Write result to address c

 Terminology: A race condition occurs when program behavior depends upon 

relative timing of two (or more) event sequences

 What actually takes place to execute the line in question:   *c += sum;

— Read value at address c

— Add sum to value

— Write result to address c

 What if two threads are trying to do this at the same time?

 Thread 0, Block 0

— Read value at address c

— Add sum to value

— Write result to address c

Terminology: Read-Modify-Write



Global Memory Contention

0c 3

Block 0 
sum = 3

Block 1
sum = 4

Reads 0

0

Computes 0+3

0+3 = 3 3

Writes 3

Reads 3

3

Computes 3+4

3+4 = 7 7

Writes 7

0 3 73

Read-Modify-Write

Read-Modify-Write

*c += sum



Global Memory Contention

0c 0

Block 0 
sum = 3

Block 1
sum = 4

Reads 0

0

Computes 0+3

0+3 = 3 3

Writes 3

Reads 0

0

Computes 0+4

0+4 = 4 4

Writes 4

0 0 43

Read-Modify-Write

Read-Modify-Write

*c += sum



Atomic Operations

 Terminology: Read-modify-write uninterruptible when atomic

 Many atomic operations on memory available with CUDA C

 Predictable result when simultaneous access to memory required

 We need to atomically add sum to c in our multiblock dot product

 atomicAdd()

 atomicSub()

 atomicMin()

 atomicMax()

 atomicInc()

 atomicDec()

 atomicExch()

 atomicCAS()



Multiblock Dot Product: dot()

__global__ void dot( int *a, int *b, int *c ) {

__shared__ int temp[THREADS_PER_BLOCK];

int index = threadIdx.x + blockIdx.x * blockDim.x;

temp[threadIdx.x] = a[index] * b[index];

__syncthreads(); 

if( 0 == threadIdx.x ) {

int sum = 0;

for( int i = 0; i < THREADS_PER_BLOCK; i++ )

sum += temp[i];

atomicAdd( c , sum );

}

}

 Now let’s fix up main() to handle a multiblock dot product



Parallel Dot Product: main()
#define N  (2048*2048)

#define THREADS_PER_BLOCK 512

int main( void ) {

int *a, *b, *c;                      // host copies of a, b, c

int *dev_a, *dev_b, *dev_c;          // device copies of a, b, c

int size = N * sizeof( int );        // we need space for N ints

// allocate device copies of a, b, c

cudaMalloc( (void**)&dev_a, size );

cudaMalloc( (void**)&dev_b, size );

cudaMalloc( (void**)&dev_c, sizeof( int ) );

a = (int *)malloc( size ); 

b = (int *)malloc( size );

c = (int *)malloc( sizeof( int ) );

random_ints( a, N ); 

random_ints( b, N );



Parallel Dot Product: main()
// copy inputs to device

cudaMemcpy( dev_a, a, size, cudaMemcpyHostToDevice );

cudaMemcpy( dev_b, b, size, cudaMemcpyHostToDevice );

// launch dot() kernel

dot<<< N/THREADS_PER_BLOCK, THREADS_PER_BLOCK >>>( dev_a, dev_b, dev_c );

// copy device result back to host copy of c

cudaMemcpy( c, dev_c, sizeof( int ) , cudaMemcpyDeviceToHost );

free( a ); free( b ); free( c );

cudaFree( dev_a );

cudaFree( dev_b );

cudaFree( dev_c );

return 0;

}



Review

 Race conditions

— Behavior depends upon relative timing of multiple event sequences

— Can occur when an implied read-modify-write is interruptible

 Atomic operations

— CUDA provides read-modify-write operations guaranteed to be atomic

— Atomics ensure correct results when multiple threads modify memory
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N-Body 



N-Body Algorithms 

• An N-body simulation 
numerically approximates 
the evolution of a system 
of bodies in which each 
body continuously 
interacts with every other 
body 
– Galaxies 
– Protein folding 
– Molecular dynamics, 

Materials Science 
– Fluid flow 
– Global illumination (for CG) 

• Algorithms 
– All-pairs interactions 

• Computationally intense 
• O(N2) 
• Easily parallelized 

– Usually use some sort of 
cutoff radius and an 
approximation for long 
range forces 

• Extensively studied for 
decades 
– Barnes-Hut, FMM, Particle-

mesh 
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BASIC ALL-PAIRS N-BODY 

vetter@computer.org 28 

Example from H. Nguyen, GPU Gems 3: Addison-Wesley Professional, 2007. 



Basic All-Pairs N-Body 

• Each body has 

– Position (x, y, z) 

– Velocity (x, y, z) 

– Mass 

– Perhaps other attributes 
based on specific 
simulation 
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Implementation Strategy 

• Think of the all-pairs 
algorithm as calculating 
each entry f ij in an NxN 
grid of all pair-wise 
force 

• Then, total force F i (or 
acceleration a i ) on 
body i is obtained from 
the sum of all entries in 
row I (a reduction!) 

• Abundant parallelism: 
O(N2) 

• But requires O(N2) 
memory and needs BW 

 

• Need to improve data 
reuse to increase 
computational intensity 
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Alternate Strategy: Tiles 

• Rather, use a tile, which is a square region of this grid 
that has p rows and p columns 

• Only 2p body descriptions are necessary to evaluate tile 
(p can be optimized to fit into fast memory) 

• Each row is evaluated sequentially 

• But all p rows can be evaluated in parallel 

vetter@computer.org 31 



Body-Body Force Calculation (CUDA) 
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Evaluating a Tile 

• Each thread will be executing this routine 

• shPosition is an array in shared memory 
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Clustering Tiles into Thread Blocks 

• Tiles must be sized to 
balance parallelism with 
data reuse 

• Parallelism 
– Enough work to keep thread 

units busy and hide latency 

• Reuse 
– Grows w/ number of columns 

• Balance 
– Tile size determines register 

space and shared memory 
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Thread Block Execution 
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Grid of Thread Blocks to Calculate All 
Forces 

• 1D grid of N/p 
independent thread 
blocks with p threads 
each 
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Performance Effects 
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Caveat: This is the most simple  
version of n-body 

• Barnes-Hut 
• Fast Multipole Method 
• Particle Mesh, PPPE 
• Neutral Territory (Hybrid) 

– Integration step 
parallelized by assigning 
particles to processors  
according to a partitioning 
of space 

– Force computation step 
parallelized by pairs across 
processors but may be 
unrelated to particle-
processor assignments 

 

• A common component of 
many of these parallel 
methods for computing 
long-range forces is the 3-
D FFT for solving the 
Poisson equation on a 3-D 
mesh 
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OpenCL (by way of CUDA) 



Basic Differences 

CUDA 
• use compiler to build kernels 

• C language extensions (nvcc) 
– also a low-level driver-only API 

• buffer offsets allowed 

• pointer traversal allowed 

OpenCL 
• build kernels at runtime 

• API only; no new compiler 
– API calls to execute kernel 

• buffer offsets not allowed 

• must use pointer arithmetic 

40 

• terminology 
• syntax 
• API calls 
• compilation 



Terminology 

CUDA OpenCL 

Thread  Work-item  

Thread block  Work-group  

Global memory  Global memory  

Constant memory  Constant memory  

Shared memory  Local memory  

Local memory  Private memory  

41 



Function Qualifiers 

CUDA OpenCL 

__global__ __kernel 

__device__ … 

42 

CUDA OpenCL 

__constant__ __constant  

__device__ __global 

__shared__ __local 

Variable Qualifiers 



Example API Calls 

CUDA Version OpenCL Version 

cudaMemcpy 
clEnqueueReadBuffer/ 
clEnqueueWriteBuffer 

cudaMalloc clCreateBuffer 

(compile-time call to nvcc)  clBuildProgram 

(direct kernel invocation) 
clSetKernelArg   + 

clEnqueueNDRangeKernel 
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Kernel Code Example 

CUDA 
__global__ void 

vectorAdd(const float *a, 

          const float *b, 

          float * c) 

{ 

  // Vector element index 

  int nIndex = blockIdx.x *  

      blockDim.x + threadIdx.x; 

 

  c[nIndex] = a[nIndex] + b[nIndex]; 

} 

OpenCL 
__kernel void 

vectorAdd(__global const float *a, 

          __global const float *b, 

          __global float * c) 

{ 

  // Vector element index 

  int nIndex = get_global_id(0); 

 

 

  c[nIndex] = a[nIndex] + b[nIndex]; 

} 
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Host Code Example 

CUDA 
float *data;  // device memory allocated with cudaMalloc 

int    value;  

myfunction<<<nblocks,nthreads>>>(data, value) 

OpenCL 
cl_mem data; 

int    value; 

cl_kernel k = clCreateKernel(prog, “myfunction”, 0); 

clSetKernelArg(k, 0, sizeof(cl_mem), (void*)&data);  

clSetKernelArg(k, 1, sizeof(int),    (void*)&int); 

clEnqueueNDRangeKernel(cmdQueue, k, 1, 0, &worksize, 0, 0, 0, 0); 
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Other Resources 

• OpenCL: 

– http://www.khronos.org/opencl/ 

• OpenCL for CUDA programmers: 

– http://developer.amd.com/zones/openclzone/ 
programming/pages/portingcudatoopencl.aspx 

– http://developer.download.nvidia.com/OpenCL/ 
NVIDIA_OpenCL_JumpStart_Guide.pdf 

• Conversion tools: 

– CU2CL 

– Swan 
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Advanced Optimization 
Topics 



SINGLE-GPU OPTIMIZATION 
TECHNIQUES 
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Host Motherboard Layout 
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DDR DRAM 

CPU 

PCIe slot 



Discrete GPU PCB Layout 

Image from http://techreport.com/articles.x/14168 

GDDR DRAM 

GPU 
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CUDA, OpenCL Optimization 
• Minimize data transfers across PCI-Express bus 

– Very expensive: e.g. 5GB/s PCIe versus 100GB/s for device 
– Can be asynchronous; overlap communication with computation 

• Coalesce memory reads (and writes) 
– ensure threads simultaneously read adjacent values 
– effectively uses GPU memory bandwidth 

 

51 

0 1 2 3 4 5 ……. data: 

 
thread: t0    t1   t2   t3 

GOOD:  GPU can read values for 

all threads in a single chunk 

data: 

 
thread: t0    t1   t2   t3 

BAD 0 1 2 3 4 5 ……. 

0 1 2 3 4 5 ……. data: 

 
thread: t0                     t1                    t2 

BAD 



CUDA, OpenCL Optimization 

• Shared memory is fast, local to a group of threads 

• When access patterns are irregular: 
– perform coalesced reads to shared memory 

– synchronize threads 

– then access in any pattern 

52 

0 1 2 3 4 5 ……. 

thread t0    t1   t2    t3   t4   t5   t6   t7 

6 7 8 

0 1 2 3 4 5 6 7 

Global memory ……. 

Shared memory 

thread t0    t1   t2    t3   t4   t5   t6   t7 



CUDA, OpenCL Optimization 

• Unroll loops to minimize overhead 

– GPU kernel compilation not yet mature here 

• Execute more than one item per thread 

– further increase computational density 

– remember: maintain coalescing 

• e.g. stride by grid size 

 

 
*Many presentations, whitepapers detail these aspects of optimization. 
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Accelerating Compiler Optimization 

• Similar concepts apply 

• Relying on compiler for a lot: 

– coalescing: you might be able to help by modifying 
your array layouts 

– unrolling, tiling, shared memory: some compilers 
are better than others, some offer unroll+jam 
pragmas, some offer shared memory pragmas 

– minimizing data transfers: most offer directives to 
specify allocation and transfer boundaries 
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OPTIMIZATIONS ON HETEROGENEOUS 
SYSTEM NODES 
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Keeneland’s Multi-GPU Nodes 

• KIDS is a dual-I/O-hub node architecture 

– Allows full PCIe bandwidth to 3 GPUs and 1 NIC 
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Sharing GPUs on Keeneland 

• Simultaneous PCIe bandwidth to all 3 GPUs 
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NON-UNIFORM MEMORY ACCESS 
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Non-Uniform Memory Access 

• Node architectures result in Non-Uniform Memory 
Access (NUMA) 
– Point-to-point connections between devices 

– Not fully-connected topologies 

– Host memory connected to sockets instead of across a bus 
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NUMA Can Affect GPUs and Network Too 

60 

• DL160 
• Single I/O Hub 
• PCIe switch connects GPUs 

• SL390 
• Dual I/O Hub 
• No PCIe switch 

Older node architecture with single I/O hub but no NUMA effects between CPU and GPU/HCA 

KIDS node architecture with dual I/O hub but NUMA effects 



NUMA Control Mechanisms 

• Process, data placement tools: 

– Tools like libnuma and numactl 

– Some MPI implementations have NUMA controls 
built in (e.g., Intel MPI, OpenMPI) 

 

• numactl usage: 
       numactl [--interleave=nodes] [--preferred=node] 
               [--physcpubind=cpus] [--cpunodebind=nodes] 
               [--membind=nodes] [--localalloc] command   
       numactl [--show] 

       numactl [--hardware] 
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numactl on KIDS 

 
[meredith@kid107]$ numactl -show 
policy: default 
preferred node: current 
physcpubind: 0 1 2 3 4 5 6 7 8 9 10 11 
cpubind:  0 1 
nodebind: 0 1 
membind:  0 1 
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“NUMA Nodes” on KIDS nodes 
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numactl on KIDS 

 
[meredith@kid107]$ numactl --hardware 
available: 2 nodes (0-1) 
node 0 size: 12085 MB 
node 0 free: 11286 MB 
node 1 size: 12120 MB 
node 1 free: 11648 MB 
node distances: 
node   0   1 
  0:  10  20 
  1:  20  10 
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OpenMPI with NUMA control 

Use mpirun to execute a script: 

mpirun ./prog_with_numa.sh 

 

In that script (prog_with_numa.sh) launch under numactl: 
if [[$OMPI_COMM_WORLD_LOCAL_RANK == "0"]] 

then 

   numactl --membind=0 --cpunodebind=0 ./prog –args 

else 

   numactl --membind=1 --cpunodebind=1 ./prog –args 

fi 
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How much Does NUMA Impact 
Performance? 

• Microbenchmarks to focus on individual node 
components 

• Macrobenchmarks to focus on individual 
operations and program kernels 

• Full applications to gauge end-user impact 
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Data Transfer Bandwidth 

• Measured bandwidth of data transfers between CPU socket 0 and the GPUs 
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CPU-to-GPU GPU-to-CPU 



SHOC Benchmark Suite 

• What penalty for “long” mapping? 

• Rough inverse correlation to computational intensity 
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Full Applications 

• With one application task, performance penalty for using incorrect mapping (e.g., 
CPU socket 0 with GPU 1) 

• With two application tasks, performance penalty for using mapping that uses “long” 
paths for both (e.g., CPU socket 0 with GPU 1 and CPU socket 1 with GPU 0) 
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HPL Linpack 

• Runtimes on KIDS under 3 pinning scenarios 
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NUMA and Network Traffic 

• Have to worry about not only process/data 
placement for CPU and GPU, but also about 
CPU and Infiniband HCA 
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Thread Splitting 

• Instead of 1 thread that controls a GPU and 
issues MPI calls, split into two threads and bind 
to appropriate CPU sockets 

72 



“NUMA Nodes” on KFS nodes 
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KIDS/KFS NUMA Penalty: OpenCL Bandwidth 
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KIDS/KFS NUMA Penalty: OpenCL Latency 
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KIDS/KFS GPU Transfer Performance 

• New Sandy Bridge CPUs (on KFS) have PCIe directly attached 
 

• Bandwidth 
– Absolute performance is similar 

– Download NUMA penalty virtually eliminated 

– Upload NUMA penalty somewhat reduced 
 

• Latency 
– Absolute latency improves 

– Download/upload NUMA penalty reduced 

76 



GPU DIRECT 
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GPU Direct 

• Transferring data between GPUs in a scalable 
heterogeneous system like KIDS is expensive 

– Between GPUs in different nodes 

– Between GPUs in the same node 
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The Problem with Inter-Node Transfers 

• Data is in device memory of GPU on one node, 
needs to be transferred to device memory of GPU 
on another node 

• Several hops: 
– Data transferred from GPU memory to GPU buffer in 

host memory 
– Data copied from GPU buffer to 

IB buffer in host memory 
– Data read by IB HCA using 

RDMA transfer 
– Repeat in reverse on other end 
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GPUDirect 

• NVIDIA and Mellanox developed an approach for allowing 
others to access the GPU buffer in host memory 

• Eliminates the data copy from GPU buffer to IB buffer 
– Eliminates two system memory data copy operations (one on 

each end) 
– Keeps host CPU out of the data path 
– Up to 30% performance improvement (according to NVIDIA) 
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GPUDirect 2.0: Improving Transfer 
Performance Within a Node 
• Similar problem when transferring data from one GPU 

to another within the same node 

• Old way: 
– Copy data from GPU 1 to host memory 

– Copy data from host memory to GPU 2 

• New way: 
– Copy data from GPU 1 to GPU2 without host CPU 

involvement 

• Integrates well with Unified Virtual Addressing feature 
(single address space for CPU and 1+ GPUs) 

• Available since CUDA 4.0 
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Current GPUDirect support on KIDS 

• Currently active on KIDS for GPU1GPU2 

– 2.8 GB/s normally, 4.9 GB/s with GPUDirect 
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Using GPUDirect 

• General strategy: 

– GPU-GPU copies 

• Use cudaMemcpy with two device pointers 

• Enable peer access in CUDA to allow direct GPU-GPU 
– even allows inter-GPU access within CUDA kernels  

– Host-device copies 

• Allocated any host memory as pinned in CUDA 

• CUDA driver puts this in user-pageable memory, 
virtual address space 

– May need to “export CUDA_NIC_INTEROP=1” 
for InfiniBand to share this with CUDA 
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Checking GPUDirect for GPU1  GPU2 

1. Are devices using Tesla Compute Cluster driver? 
•  cudaDeviceProp prop1, prop2; 
•  cudaGetDeviceProperties(&prop1, 1); 
•  cudaGetDeviceProperties(&prop2, 2); 
•  check prop1.tccDriver==1 and prop2.tccDriver==1 

 

2. Do devices support peer access to each other? 
•  int access2from1, access1from2; 
•  cudaDeviceCanAccessPeer(&access2from1, 1, 2); 
•  cudaDeviceCanAccessPeer(&access1from2, 2, 1); 
•  check access2from1==1 and access1from2==1 
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Enabling GPUDirect for GPU1  GPU2 

3. Enable device peer access both directions: 
• cudaSetDevice(1); 

• cudaDeviceEnablePeerAccess(2,flags); //flags=0 

• cudaSetDevice(2); 

• cudaDeviceEnablePeerAccess(1,flags); //flags=0 

 

4. Example: send data directly from GPU2 to GPU1: 
• float *gpu1data, *gpu2data; 

• cudaSetDevice(1); 

• cudaMalloc(&gpu1data, nbytes); 

• cudaSetDevice(2); 

• cudaMalloc(&gpu2data, nbytes); 

• cudaMemcpy(gpu1data, gpu2data, cudaMemcpyDefault); 
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MPI AND GPU TASK MAPPING 
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How to combine GPUs and MPI? 

• Use 1 MPI task per CPU core? 

– Simplest for an existing MPI code 

• particularly if they are not threaded 

– Either time share GPUs … 

• performance can vary, especially with more tasks/GPU 

– … or only use GPUs from some MPI tasks 

• introduce load balance problem 
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How to combine GPUs and MPI? 

• Use 1 MPI task per GPU?  Per CPU socket? 

– thread/OpenMP/OpenCL to use more CPU cores 

– ratios like 3GPU:2CPU add complexity 

• pinning 3 tasks to 2 CPU sockets makes using 12 cores hard 

• optimal NUMA mapping may not be obvious 

– can use 1 task for 2 GPUs, leave 3rd GPU idle 

• with 2 I/O hubs, bandwidth is probably sufficient 

– can leave CPU cores idle 

• for codes that match GPUs well, this can be a win 

• recent NVIDIA HPL results show benefits of this approach 
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How to combine GPUs and MPI? 

• Use 1 MPI task per compute node? 

– With work, can be highly optimized: 

• Best use of GPUDirect transfers (GPU-GPU, GPU-NIC) 

• Can use numactl library within the task 

– Very complex – must handle: 

• multiple GPUs in one task 

• offload work for all CPU cores 

• NUMA mapping is a challenge 

– especially for automated threading like OpenMP 
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Bonus Slides 


